
Applied Laser Technology

Vol. 31, No.2 June (2024), pp.01–11

1

THE ROUTING REVELATION: MAPPING THE DIGITAL LANDSCAPE

Mrs.Korudu Surekha1., Muthyam Rishika2
1 Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women.,

Maisammaguda., Medchal., TS, India

2, B.Tech ECE (21RG1A0443),

Malla Reddy College of Engineering for Women., Maisammaguda., Medchal., TS, India

Abstract: Abstract: The Switch Port Mapper can discover the ports on any manageable Cisco Catalyst

Switch and detail the devices connected to those ports by MAC address, IP address and hostname. This tool

eliminates tracing of LAN cables to determine the physical location of devices and makes the network

documentation easy.The port mapping is done by discovering and correlating Port/MAC/Interface

information from the switch. The MAC/IP address information is discovered from a Router that is directly

connected to the same subnet as the switch. SNMP (Simple Network Management Protocol), Perl language

and HTML/JavaScript are used to develop this Research Paper. SNMP protocol collects the required

Port/MAC/Interface information from the switch; Perl is used to run these SNMP queries and

HTML/Javascript to display the results. Since this is a real-time discovery you can view the operational

status and port speed of each port. The Output can be exported to Microsoft Excel or mySQL database.

Keywords: MAC address, Perl Language, SNMP, HTML, mySQL

1. Introduction

In a switched network environment where

hundreds of PCs get connected to tens of Layer-

2 switches, Network Administrator often finds

it difficult to trace a PC using its IP or MAC

address. To get the info about which port the

PC is on, he has to login to each and every

Switch and run few commands to determine

the port. This will be a time-consuming process

if the number of switches increases beyond

five. Switch Port Mapper does the required

mapping within seconds. It maintains the

database of the Switched Network by querying

the information from the Switches and Routers

at periodic intervals and provides a user-

friendly interface to fetch and display the data

at the click of the mouse. The first chapter

focuses on various technologies used to

develop this tool that helps the reader to better

understand the design and implementation

aspects of the tool. To make the reader walk

through the basic concepts of various

technologies used, which would help him

better understand the operation of the tool.

1.1 Cisco Switches:

The Cisco Catalyst 3550 Series Switch is a stackable,

multilayer switch that provides high availability,

quality of service (QoS), and security to enhance

network operations. With a range of Fast Ethernet

and Gigabit Ethernet configurations, the Cisco

Catalyst 3550 Series is a powerful option for

enterprise and metro access applications. The
Catalyst 3550 switch provides 48 10/100Mbps

Fast Ethernet ports and 2 GBIC-based Gigabit

Ethernet ports. The 10/100Mbps Fast Ethernet ports

are used to connect PCs and Gigabit ports for

interconnecting switches. These switches are SNMP

enabled, meaning they understand SNMP protocol.

Applied Laser Technology

Vol. 31, No.2 June (2024), pp.01–11

2

“Switch Port Mapper” uses Perl’s Net-SNMP module

and its related methods to query the data from these

switches[[1], [4].

1.2 Understanding SNMP:

SNMP is based on the manager/agent model

consisting of a manager, an agent, a database of

management information, managed objects and the

network protocol. The manager provides the interface

between the human network manager and the

management system. The agent provides the interface

between the manager and the physical device(s)

being managed (see the illustration below)[1], [2],

[3].

The manager and agent use a Management

Information Base (MIB) and a relatively small set of

commands to exchange information. The MIB is

organized in a tree structure with individual

variables, such as interface status or description,

being represented as leaves on the branches. A long

numeric tag or object identifier (OID) is used to

distinguish each variable uniquely in the MIB and in

SNMP messages. SNMP uses five basic messages

(GET, GET-NEXT, GET-RESPONSE, SET, and

TRAP) to communicate between the manager and the

agent. The GET and GET-NEXT messages allow the

manager to request information for a specific

variable. The agent, upon receiving a GET or GET-

NEXT message, will issue a GET-RESPONSE

message to the manager with either the information

requested or an error indication as to why the request

cannot be processed[5], [6].

Fig. 1 SNMP protocol

1.1.1 Management Information Base (MIB):

Each SNMP element (eg. Switch) manages specific

objects (eq. Switch port) with each object having

specific characteristics (eg port status, description

etc). Each object / characteristic has a unique object

identifier (OID) consisting of numbers separated by

decimal points (i.e., 1.3.6.1.2.1.2.2.1.2). These object

identifiers naturally form a tree as shown below. The

MIB associates each OID with a readable label (i.e.,

ifDescr) and various other parameters related to the

object. The MIB then serves as a data dictionary or

codebook that is used to assemble and interpret

SNMP messages.

When an SNMP manager wants to know the value of

an object / characteristic, such as the description of a

switch port, the system name, or the system uptime, it

will assemble a GET packet that includes the OID for

each object / characteristic of interest. The element

receives the request and looks up each OID in its

codebook (MIB). If the OID is found (the object is

managed by the element), a response packet is

assembled and sent with the current value of the

object / characteristic included. If the OID is not

found, a special error response is sent that identifies

the unmanaged object[7], [8],[9].

Apart from GET and SET commands, we have

certain SNMP utilities named as ‘snmpwalk’ and

‘snmpget’ that are used more commonly to query the

SNMP enabled devices for information stored in the

MIB.

SNMP is based on the manager/agent model

of network management architecture.

Applied Laser Technology

Vol. 31, No.2 June (2024), pp.01–11

3

This research paper is organized as in section 2, discussed the related research work, in section 3,

Theory calculations, in section 4, Experimental results and discussions, followed by conclusion.

Fig.2 Internet MIB Hierarchy

2. Related Work

Perl and its Modules: Perl is an interpreted

programming language known for its power and

flexibility. It combines the familiar syntax of C, C++,

grep, sh, and csh into a tool that is more powerful

than the separate pieces used together. Among the

best things with Perl is the huge number of freely

available Perl modules. These modules contain pre-

written Perl code that helps you complete your Perl

scripts in a lot less time. A module provides a way to

package Perl code for reuse. Available modules

include support for access to Oracle and other

databases; networking protocols such as HTTP

(Web), POP3 (email), SNMP and FTP (file

transfers); and special Win32 modules for access to

the Windows 95 or NT operating systems. Many

modules support object-oriented concepts. Switch

Port Mapper uses Net-SNMP module to fetch the

information from the network devices and DBI

module to store the data in MySQL database

server[10], [11].

The Net-SNMP module implements an object-

oriented interface to the Simple Network

Management Protocol. Perl applications use the

module to retrieve or update information on a remote

host using the SNMP protocol. The module supports

SNMP version-1, SNMP version-2c (Community-

Based SNMPv2), and SNMP version-3. The Net-

SNMP module abstracts the intricate details of the

Simple Network Management Protocol by providing

a high level-programming interface to the protocol.

Each Net-SNMP object provides a one-to-one

mapping between a Perl object and a remote SNMP

agent or manager. Once an object is created, it can be

used to perform the basic protocol exchange actions

defined by SNMP. This module has certain methods,

which the tool uses to achieve desired results. The

following are some methods, which are used in this

research paper. Figure.1 and Figure.2 represents the

SNMP Protocol and Internet MIB Hierarchy.

3. Theory/Calculation

Port-to-IP mapping algorithm:

Applied Laser Technology

Vol. 31, No.2 June (2024), pp.01–11

4

The main function of this Research Paper is to

get the port to IP mapping information from the

switches and the procedure is outlined below:

Choose a switch: Select the first port on the

switch, i.e., FastEthernet0/1 Get the index value

of the port by running SNMP query using

ifDescr OID 1.3.6.1.2.1.2.2.1.2 and grep for

FastEthernet0/1. The value obtained will be the

OID itself with a number appended to it at the

end. Separate that number from the OID and

that gives the port index value.

Use the index value to get the VLAN

information of the port using the OID

‘1.3.6.1.4.1.9.9.68.1.2.2.1.2.index’. The result

will be an Integer value. This value is required to

change the SNMP community string to

‘public@VLAN’ and will be used in the next

sessions.

Using the index and VLAN values get the bridge

port information using the OID

1.3.6.1.2.1.17.1.4.1.2 and grep for the value

index. This value is required to get the MAC

address of the device (in decimal form)

connected to this switch port. The value

obtained will be the OID with a number

appended to it at its rear. Separate this number

from the OID to get the bridge port value.

With the above value run SNMP query on the

switch to get decimal MAC address using OID

1.3.6.1.2.1.17.4.3.1.2 and grep for the bridge

port value. The resultant will be a dotted

decimal number appended to the rear of the

OID value. Separate this dotted number to get

the MAC address of the device in decimal form.

1. Get the equivalent Hex value from the above

decimal value using OID 1.3.6.1.2.1.17.4.3.1.1

and grep for the decimal MAC value. The output

will be a MAC address in Hexa-decimal form.

2. Use this Hex value and query the Router to

get the IP address of the device connected to

the port using OID 1.3.6.1.2.1.4.22.1.2 and grep

for the Hex MAC value. The output obtained will

be the OID with dotted decimal number

appended to its rear. Separate this number to

get the IP address of the device. To implement

these steps manually, will be a time consuming

process because same steps need to be

repeated for each port on the switch and if the

number of switches are more…just imagine.

Switch Port Mapper is designed to overcome

this difficulty. It uses the Perl script that does

the required mapping using the above steps

and even more, which are included below.

Connect to the database server and dump the

data.

Repeat steps 3 to 9 by selecting the next port of

the switch.

Repeat steps 3 to 10 until the port value

becomes equal to 48.

Repeat steps 2 to 11 by selecting new switch in

the list.

 Block Diagram:

Applied Laser Technology

Vol. 31, No.2 June (2024), pp.01–11

5

 Fig.3 Block Diagram

Backend:

As shown in the diagram, a perl script queries

the Switches for the required info and passes

the collected data to MySQL database server for

storage. The Perl script uses two of its modules

named Net-SNMP to create an interface with

the network switches to pass SNMP requests

and DBI to connect to MySQL server database.

Let’s see how this is implemented in the perl

script[12], [13], [14. Fig.3 represents the block

diagram of the entire flow.

Front-end:

In the front-end process, the Client program

sends requests to Apache web server and

invokes the PHP scripts, which initiates

connection to MySQL server to run SQL

commands to collect data. The requested data

obtained from the database server is passed

back to the client in a predetermined format.

Interface program:

Once the data is in the database, we need a

program that acts as an interface between the

client and the server to retrieve the data as and

when required. The interface should be simple

and user-friendly. Switch Port Mapper has used

Javascript program to build this interface. This

program is a freeware downloaded from

Internet. We made some changes to the code

to use it in the Research Paper. Basically, we

include this Javascript code in a HTML file that

resides on web server’s

/root/switchportmapper directory. Whenever

we connect to

http:/webservername/switchportmapper, this

file gets loaded onto web browser (used as

client program)[15], [16], [17].

4. Experimental Design and Results

Applied Laser Technology

Vol. 31, No.2 June (2024), pp.01–11

6

 Fig.4 Main Page

This is the page that gets loaded into the browser when we connect to Switch Port Mapper main page.

The frame on the left displays the folder tree view built using Javascript, which is a freeware available on

Internet. Fig.4 represents the main page. On the left frame, click on the ‘+’ sign to display the folders

under the Root folder ‘Switch Port Mapper’.The Root folder ‘Switch Port Mapper” has the following

folders:

Hyd Switches -> Individual Switch info is displayed

Search -> Provides options to display data

Help -> Documentation

Useful Links -> Links useful to our organization.

Fig. 5 Switch Port Mapper root folder

Click on the ‘+’ sign beside these folders to display

Applied Laser Technology

Vol. 31, No.2 June (2024), pp.01–11

7

sub-folders under them. Fi.4

Fig.6 Hyd Switches

Under Hyd Switches, we have the sub-folders each representing a switch. Clicking on the names invokes

a PHP script on apache server that connects to the database server and fetches the information specific

to that switch. The screenshot below shows the output displayed when the user selects the first sub-

branch under ‘Hyd Switches’. Fig. 5 and Fig.6 represents the Switch Port Mapper root folder and hybrid

Switches.

Fig.7 Switch Configuration Page

Applied Laser Technology

Vol. 31, No.2 June (2024), pp.01–11

8

It shows that the information specific to each port, its status info, IP address of the device connected to

it, its mac address, the hostname and the vlan info. This gives the complete picture of the switch and its

busy ports.

Similar pages get displayed, but with some changes specific to each switch configuration, by clicking on

the other switch names. So far we have seen that the tool can be used to get the complete configuration

details of a switch just by clicking on its name. Sometimes it is required to search for specific info like to

what switch-port a device is connected given the IP address. Focusing on such requirements we have

come up with some options, which are included under Search folder. Fig.7 shows the Switch

Configuration Page.

Search has the following sub-folders:

• By Port

• By VLAN

• By Ipaddress

Fig.8 Search by Port Page

The screenshot displays the output when user intends to search the database based on port. The page

displays two drop-down boxes, one with switch names and the other with port numbers. User selects

the switch name and then any port to get the details of it. This operation is shown in the next

screenshot. On selecting switch ‘switch1-1.hyd.int.untd.com’ and port ‘FastEthernet0/1’ and clicking on

Applied Laser Technology

Vol. 31, No.2 June (2024), pp.01–11

9

the button ‘Get the Host’ will actually send the request to a PHP script, passing the switch name and

port number as arguments. Fig.8 gives the search by port page.

Search by Port results

The Script connects to database server and queries the information and displays the data as shown

above. Next option search by IP address displays the below page that prompts the user to enter the IP

address of the device whose switch port information needs to be queried. Figs 9 and 10 represents the,

search by port and search by IP address.

Fig.9 Search by port

Applied Laser Technology

Vol. 31, No.2 June (2024), pp.01–11

10

Fig.10 Search by IP address Page

User enters the IP address in the text box and clicks on the button ‘Get the Host’. This action invokes the

PHP script on the server and passes the IP address as the argument to the script. Using this argument

PHP connects to the database server and searches the tables for switch port details and displays the

information regarding the name of the switch and the port.

Fig.11 Search by IP results Page

The other folders are not so important and it is added them here to facilitate the users in my

organization to connect to those sites directly without opening a new client program to connect to when

they are using this tool [18], [19]. Fig.11 represents the search by IP results page.

Applied Laser Technology

Vol. 31, No.2 June (2024), pp.01–11

11

5. Conclusions

The MAC/IP address information is discovered

from a Router that is directly connected to the

same subnet as the switch. SNMP (Simple

Network Management Protocol), Perl language

and HTML/JavaScript are used to develop this

Research Paper. SNMP protocol collects the

required Port/MAC/Interface information from

the switch; Perl is used to run these SNMP

queries and HTML/Javascript to display the

results. Since this is a real-time discovery you

can view the operational status and port speed

of each port. The Output can be exported to

Microsoft Excel or mySQL database. In

corporate offices where hundreds of computers

are interconnected using switches, Switch Port

Mapper greatly helps in tracing the computers

affected by virus within seconds thereby

reducing the damage to almost zero.

5. References

[1] Lara, A.; Kolasani, A.; Ramamurthy, B. Network Innovation

Using OpenFlow: A Survey. IEEE Commun. Surv. Tutor.

2013, 16, 1–20.

[2] Astuto, B.N.; Mendonça, M.; Nguyen, X.N.; Obraczka, K.;

Turletti, T. A Survey of Software-Defined Networking: Past,

Present, and Future of Programmable Networks. IEEE

Commun. Surv. Tutor. 2014,

doi:10.1109/SURV.2014.012214.00180.

[3] Jain, R.; Paul, S. Network Virtualization and Software

Defined Networking for Cloud Computing: A Survey. IEEE

Commun. Mag. 2013, 51, 24–31.

[4] Open Networking Foundation. Available online:

https://www.opennetworking.org/ (accessed on 22 July

2013).

[5] Dorie,1. A.; Salim, J.H.; Haas, R.; Khosravi, H.; Wang, W.;

Dong, L.; Gopal, R.; Halpern, J. Forwarding and Control

Element Separation (ForCES) Protocol Specification. RFC

5810 (Proposed Standard), 2010. Available online:

https://datatracker.ietf.org/doc/rfc5810/ (accessed on 22 July

2013).

[6] Yang, L.; Dantu, R.; Anderson, T.; Gopal, R. Forwarding and

Control Element Separation (ForCES) Framework. RFC

3746 (Informational), 2004. Available online:

https://datatracker.ietf.org/doc/rfc3746/ (accessed on 22 July

2013).

[7] 7. Hares, S. Analysis of Comparisons between OpenFlow and

ForCES. Internet Draft (Informational), 2012. Available

online: https://datatracker.ietf.org/doc/ draft-hares-forces-vs-

openflow/ (accessed on 17 February 2014).

[8] Haleplidis, E.; Denazis, S.; Koufopavlou, O.; Halpern, J.;

Salim, J.H. Software-Defined Networking: Experimenting

with the Control to Forwarding Plane Interface. In

Proceedings of the European Workshop on Software Defined

Networks (EWSDN), Darmstadt, Germany, 25–26 October

2012; pp. 91–96.

[9] Lakshman, T.V.; Nandagopal, T.; Ramjee, R.; Sabnani, K.;

Woo, T. The SoftRouter Architecture. In Proceedings of the

ACM Workshop on Hot Topics in Networks (HotNets), San

Diego, CA, USA, 15–16 November 2004.

[10] Zheng, H.; Zhang, X. Path Computation Element to Support

Software-Defined Transport Networks Control. Internet Draft

(Informational), 2014. Available online:

https://datatracker.ietf.org/doc/draft-zheng-pce-for-sdn-

transport/ (accessed on 2 March 2014).

[11] Rodriguez-Natal, A.; Barkai, S.; Ermagan, V.; Lewis, D.;

Maino, F.; Farinacci, D. Software Defined Networking

Extensions for the Locator/ID Separation Protocol. Internet

Draft (Experimental), 2014. Available online:

http://wiki.tools.ietf.org/id/ draft-rodrigueznatal-lisp-sdn-

00.txt (accessed on 2 March 2014).

[12] Rexford, J.; Freedman, M.J.; Foster, N.; Harrison, R.;

Monsanto, C.; Reitblatt, M.; Guha, A.; Katta, N.P.; Reich, J.;

Schlesinger, C. Languages for Software-Defined Networks.

IEEE Commun. Mag. 2013, 51, 128–134.

[13] Foster, N.; Harrison, R.; Freedman, M.J.; Monsanto, C.;

Rexford, J.; Story, A.; Walker, D. Frenetic: A Network

Programming Language. In Proceedings of the ACM

SIGPLAN International Conference on Functional

Programming, Tokyo, Japan, 19–21 September 2011.

[14] Monsanto, C.; Reich, J.; Foster, N.; Rexford, J.; Walker, D.

Composing Software-Defined Networks. In Proceedings of

the USENIX Syposium on Networked Systems Design &

Implementation (NSDI), Lombard, IL, USA, 2–5 April 2013;

pp. 1–14.

[15] Voellmy, A.; Kim, H.; Feamster, N. Procera: A Language for

High-Level Reactive Network Control. In Proceedings of the

ACM Workshop on Hot Topics in Software Defined

Networks (HotSDN), Helsinki, Finland, 13–17 August 2012;

pp. 43–48.

[16] Facca, F.M.; Salvadori, E.; Karl, H.; Lopez, D.R.; Gutierrez,

P.A.A.; Kostic, D.; Riggio, R. NetIDE: First Steps towards

an Integrated Development Environment for Portable

Network Apps. In Proceedings of the European Workshop on

Software Defined Networks (EWSDN), Berlin, Germany,

10–11 October 2013; pp. 105–110.

[17] Tennenhouse, D.L.; Wetherall, D.J. Towards an Active

Network Architecture. ACM SIGCOMM Comput. Commun.

Rev. 1996, 26, 5–18.

[18] Campbell, A.T.; De Meer, H.G.; Kounavis, M.E.; Miki, K.;

Vicente, J.B.; Villela, D. A Survey of Programmable

Networks. ACM SIGCOMM Comput. Commun. Rev. 1999,

29, 7–23.

[19] Feamster, N.; Rexford, J.; Zegura, E. The Road to SDN: An

Intellectual History of Programmable Networks. ACM Queue

2013, 12, 20–40.

